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Abstract The importance of non-local symmetries of differential equations lies in their 
.manifestation as Lie point symmetries of the equations resulting from reduction of order. The 
reason for the determination of these.symmetries in second-order equations with only one Lie 
point symmetry is self-evident. However, the disadvantage of non-local symmetries is thaf no 
systematic approach to their determination exists. We present such an approach (applicable 
ta differential equations of any order) and apply it to some second-order ordinary differential 
equations and show that they have a rich occumnce. We also look at possible generalizations 
of the concept of non-local symineuies. 

1. Introduction 

The concept of invariance under transformation is central to understanding the mathematical 
description of physical phenomena and the solution, of equations which comprise that 
description. Thus the conservation of energy is associated with invariance of the Hamiltonian 
under time translation and that of angular momentum with invariance under rotation. Various 
theories have been developed to exploit the utility of conservation laws in the solution of 
physical problems. To take a typical example, a Hamiltonian, H(q, p ,  f), is said to have a 
first integral, I(q, p ,  t ) ,  if I is a solution of Liouville's equation: 

where [ ]pb is the usual Poisson bracket. For an autonomous' Hamiltonian, X ( q ,  p ) ,  (1.1) 
has the obvious solution 

This may be of some comfort,' but it does not advance the solution of the Hamiltonian 
system. It is also not possible to progress further in the solution of Lagrange's systems 
associated with (l.l), viz 

dP - 
dt dq -=-- 
I aHjap -aHjaq (1.3) 
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for general H ( q ,  p ) ,  let alone H ( q ,  p, t ) ,  unless there is some information about the internal 
structure of H, for example, that it is of ‘natural’ form 

(1.4) 
Even this is not sufficient if V = V ( q ,  t )  and the time dependence is intricately involved 
in the potential. 

What must be done then is that a structure be assumed for I, typically by specifying 
the nature of its dependence on the momentum, p. Polynomials [1,2] and rational 
functions [3,4] are the forms usually assumed. If there exists a first integral and it is of the 
form assumed, all is well and good apart from perhaps a certain number of technicalities 
interposed between ansatz and solution. The absence of a solution does not mean that a 
first integral does not exist, only that one has not been sufficiently perspicacious to guess 
its form. 

Clearly the least possible restraints placed on the form assumed for the first integral 
is the optimal route to obtaining the most general results. Systematic approaches to the 
use of invariance under transformation are found in the use of symmetries as generators of 
infinitesimal transformation in Noether’s theorem [5] and the Lie theory of extended groups. 
The degree of generality of the results to be potentially obtained by the Lie method depends 
upon the ansatz made about the functional dependence of the functions, ( and q, which 
describe the generator of symmetry, G ,  as 
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If = $pz + V(4) .  

(add indices for more than one dependent variable). The standard approach is to have ( and 
q as functions of x and y only. These point symmetries [6,p 471 can be straightforwardly 
calculated for any differential equation of order higher than first order and any function 
higher than zeroth order. If ( and q are permitted to depend on derivatives, their calculation 
can become problematic except in the case of contact symmetries of equations of higher 
order than the second. 

In a number of papers Abraham-Shrauner and co-workers [7-121 have discussed what 
they term hidden symmetries. There are two varieties. Hidden symmetries of Type I 
arise when the order of an equation is increased and Type I1 when the order of an 
equation is decreased. As our primary concern is the reduction of the order of equations, 
hidden symmetries of Type U are the ones of interest to us. (See [13] for applications of 
Typed hidden symmetries.) The origin of Type-U hidden symmetries is found in non-local 
symmetries of the higher-order equation. It is appropriate that we make precise the different 
varieties of symmetry before continuing and their common meaning. Each of them, when 
appropriately extended to be able to act on all derivatives present, gives zero when acting on 
the differential equation for which it is a symmetry. The symmetry is point if the coefficient 
functions e and q depend upon the dependent and independent variables only, generalized (a 
subset being contact) if they depend upon derivatives as well and non-local if they depend 
upon an integral or, indeed, multiple integrals. 

For the purposes of reduction of order we are interested in non-local symmetries which 
become point for the equation of reduced order. This type of non-local symmetry we call 
first order and we have 

where 
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We shall see in section 3 that even (1.7) is too general, but it shall suffice for the present. 
In the following sections we investigate the implications of allowing the generalization 

to non-local symmetries on the reduction of differential equations to quadratures. 

2. Determination of non-local symmetries 

We recall that an nth-order differential equation 
E ( x ,  y .  y'. y", . . . , Y " ' )  = 0. (2.1) 

(We will only consider nth-order scalar ordinary differential equations in the ensuing 
discussion. The results can, in principle, be extended to systems and partial differential 
equations. However, in practice this process may be decidedly non-trivial [14].) has the 
Lie point symmetry 

(2.4) 

We call X["] the nth extension (or prolongation in the terminology of 1161) which is needed 
to contend with the nth and lower derivatives in (2.1). Note that and 17 in (2.2) depend on 
x and y only. This restriction yields Lie point symmetries only which are normally used to 
reduce (2.1) to quadratures. Note that X is the generator of the group of infinitesimal point 
transformations 

i = X + E e  ( 2 . 5 ~ )  

j j = Y + E V  (2.5b) 
that leave (2.1) invariant. In this paper we broaden this class of transformations to non-local 
transformations. 

For the purposes of the ensuing discussion we call the set of infinitesimal transformations 
i = X + E {  ( 2 . 6 ~ )  

(2.6b) 

(2.6~) 

where 

I =  f ( X , Y ) d x  (2.7) s 
a first-order oneparameter Lie group of non-local infinitesimal transformations. 
generator of these non-local transformations is 

The 

where 
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We require (2.9) to remove the possibility of derivatives in q and thereby that the space of 
transformations closes. The above notation is given to show the link between our concept 
of non-local symmetries and that of the classic Lie point symmetries. 

Remark. In general we could require (, y and 7 in (2.8) to depend on n, y, y’ and 
I = J f ( x ,  y, y‘) dx. We address this possibility in section 4. 
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Note that we do not need to include 7 in (2.6) and (2.8) as the first extension of 

(2.10) 
a a G = C(X, Y. 1)- + Y ( X ,  Y, nar ax 

defines q as 

(2.11) 

However, in practice one knows e and q and works backwards to determine y .  In the actual 
calculation of non-local symmetries we ignore y a p I  in (2.8) as we are only concerned 
with differential equations. We remark that the generator defined in (2.8) has a ‘contact- 
symmetry-like’ structure. 

We are now in a position to calculate the non-local symmetries of T2.1). The procedure 
is similar to that of determining its Lie point symmetries. We require (2.1) to be invariant 
under the nth extension of (2.8). The main difference between the resulting calculation and 
that for point symmetries-is the introduction of  a fa I  terms. The determining equations 
form a system of linear ordinary differential equations. 

3. Non-local symmetries of second-order ordinary differential equations 

While it’is of mathematical interest to determine non-local symmetries of differential 
equations in general, the important occurrence of these symmetries is in second-order 
ordinary differential equations. Remember that non-local symmetries of a differential 
equation manifest themselves as Type-II hidden symmenies of the reduced equation. Thus 
a simple reduction of order and subsequent calculation of the Lie point symmetries (e.g. 
using Program LIE [17]) will determine the ‘useful’ non-local symmetries of any equation. 
(We define ‘useful’ non-local symmetries as those that reduce to point symmetries under a 
single reduction of order of the equation.) While this is true in general, it does not apply 
for second-order equations as there is no direct method to determine the infinite number 
of point symmetries that arise in the reduced first order equation 1181. In the instance 
that the second-order equation possesses more than one point symmetry, reduction of order 
via the appropriate point symmetry (i.e. one which does not annihilate the others as point 
symmetries [ 16, p 1491) will result in a first-order equation with at least one known point 
symmetry. Thus the case of second-order equations possessing just one point symmetry 
is the one of paramount importance. The determination of at least one ‘useful’ non-local 
symmetry for such equations provides a systematic route to the solution of such equations 
via the classical Lie theory of extended groups [16,18]. 

We analyse the equation 

E(Y, Y‘. Y”) = Y” - g(y, Y‘) = 0 (3.1) 
with the sole Lie point symmelsy 

(3.2) 
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for the existence of non-local symmetries. The restriction to (3.1) causes no loss of 
generality, as all ordinary differential equations (not just those of second order) with at 
least one symmetry can always be'transformed to autonomouS form. 

In the case of (3.1) possessing two point symmetries the Lie bracket relationship 

[GI, G d ~ b  = AGi (3.3) 
where A is a constant (either 0 or scaled to l), guarantees GZ as a point symmetry of the 
reduced equation. If GI is defined as in (3.2) and 

equation (3.3) implies that Gz must have the form 
a a 

Gz = (AX + k(y))- + a(y)-. 
ax a y  

(3.4) 

(3.5) 

The reduction of (3.1) by the transformation generated by (3.2). viz 

u = y  U = y' (3.6) 

uu' = g(u,  U). (3.7) 

a a 
Y = a ( ~ ) -  + u ( ~ ' ( u )  - A  - k'(u)V)-. 

au au 

results in the first-order equation 

Thus GZ will reduce (using equation (3.6) and the first extension of (3.5)) to 

(3.8) 

The structure of a non-local symmetry will be, in general, (disregarding the a / a Z  term) 
(See also [18,p 1291.) 

where 

I = f ( X , Y )  dr. s 
However, by noting the form of (3.8) we deduce that 

v = 4 Y )  and E = AX + k ( y ,  I ) .  
This follows from the requirement 

[GI ,  Gd = AGi . 
The non-local symmetry of (3.1) now reduces to 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
a a 

G " I = ( ~ + ~ ( Y , I ) ) - + u ( Y ) - - .  
ax ay 

The requirement that 5 be free of y' and f' be free of x and- I gives 
a a 

ax ay 
G.I= (AX + I )  - +u(Y)- 

where 

I = c(y)dx .  s 
(3.14) 

(3.15) 

This form is more restrictive than just being of first order (i.e. more restrictive than 
(1.6), (1.7)). Higher-order non-local symmetries (with multiple integrals) cannot be useful in 
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the sense defined above as they will not reduce to point symmetries under a single reduction 
of order. 

To determine the coefficient functions in (3.14) we require 

G[,:'EiE4 = 0 

i.e. 

(3.16) 

(3.17) ag ag r2 I 1  -a- + ((.I. + c)y' - y ' a ' ) y  + ((a' - 2(A + c))g + y (a - c')) = 0. 
a y  ay 

The solution of the associated Lagrange's system reduces to that of two linear first-order 
ordinary differential equations which we solve [19] for g to obtain 

where 
a' - 2(A + c )  c =  a 

@ =  a(c' u2 -a") exp (-2 / + ci y ) 
a A + C  

U = ~- exp (- / a dy ) 
Y' 

To make this implicit result clearer it is useful to look at a practical example. 
Consider the equation [21] 

(3.19) 

(3.20) 

where K is a constant and E a parameter, which is a reduced form of the complex Lorenz 
system under certain assumptions about~its parameters. Equation (3.20) has the;single Lie 
point symmeay 

a a G = (p2 + 1)- + p R - .  
ap a R  

(3.21) 

We use (3.21) to rewrite (3.20) in autonomous form, viz 

(3.22) 
K 2  

Y 3  
y"+&y3 + y - - = 0 

via the transformation 

x =tan-' p y = R(p2  + 1)-'/'. (3.23) 
We can now analyse (3.22) for non-local symmetries of the form (3.14). We find that 

(3.24) 

where A0 and A1 are constants and the 's on p ( y )  mean differentiation with respect to its 
argument, y .  
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It is significant that (3.22) has at least two Lie symmetries of the form (3.14) that 
commute. This guarantees the reduction of (3.20) to quadratures. It has already been 
shown that (3.20) possesses the Painlevd property [22] and is hence conjectured to be 
integrable [23]. (See [24] for a good exposition of the Painlev6 property of differential 
equations.) The reduction to quadrature has already been performed [21] without knowledge 
of the non-local symmetry. The occurrence of this symmetry is further evidence of the 
close relationship between the Lie and Painlevd analyses of differential equations as has 
been indicated previously [25,26]. 

4. Generalized non-local symmetries 

Thus far we have only considered 'point-like' non-local symmetries, i.e. the dependence of 
the coefficient functions was free from derivatives. This was due to the fact that we were 
working from a knowledge of point symmetries. However, there is no reason to exclude 
more general non-local symmetries, as they can reduce to point symmetries under a single 
reduction of order and are also 'useful'. 

Consider the generator of non-local infinitesimal transformations 

For (4.1) to be a 'useful' non-local symmetry it has to reduce to 
a a 

Gred U(U, U)- au +b(u, 0)- au (4.2) 

under 

u = y  U = y'. (4.3) 

This restriction, together with the analogue of (3.12), confines the analysis to generalized 
non-local symmetries of the form 

a a 
Z"l = c(y. y') + a ( y ,  y')-. s ay 

(4.4) 

(Here we have taken A = 0 for simplicity.) With c and a being arbitrary functions of y and 
y' the analysis can only proceed to writing down the equation to be solved. (The problem 
is similar to calculating contact symmetries of second-order ordinary differential equations.) 
Further progress can only be made by assuming a priori a form for the non-local symmetry 
(4.4). We look at some special cases: 

4.1. a(y,y') = 0 

We require 

E(Y, Y', Y") = Y" - g ( Y ,  Y') = 0 (4.5) 
to be invariant under (4.4) with a(y, y') = 0. This results in g having the following form 

(4.6) 

for (4.5) to have a generalized non-local symmetry. Given g we can determine c via (4.6) 
(Note that F ( y )  is an arbitmy function of y.) to obtain (4.4 with a(y ,  y') = 0. 
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4.2. a(y,y') = 0, g = g(y )  

K S Govinder and P G L k a c h  

In this example w e  require 

a y ,  Y")  = Y" - gcv) = 0 

c(y. y') dx-. ~~ 

F (4~ ' '  - .fgb) dy) 
Y '* 

to be invariantunder 

Z", = 
a s ax 

For a given g, c has the form 

C =  

(4.7) 

(4.8) 

(4.9) 

where F is an arbitrary function of its argument. Note that the Lorentz system (3.22) falls 
into the class (4.7). This implies that (3.22) has an additional non-local symmetry of the 
form (4.8). The Occurrence of the additional symmetry is unsurprising as the first-order 
equation obtained from (3.22) under the reduction (4.3) will have an infinite number of 
point symmetries. We expect to find, in principle, an infinite number of 'useful' non-local 
symmetries of (3.22). The form of these symmetries will depend on our ansame for a(y, y') 
and C(Y, Y'). 

The class of equations considered by Guo and Abraham-Shrauner [12] is also contained 
in (4.7). They found that (4.7) was invariant under 

(4.10) 

by first considering the first-order equation that results from the reduction of (4.7) via (4.3). 
Our method has resulted in a generalization of their results. 

4.3. a = a(y) ,  c = c(y'), g = g(y)  

We look at 

Y" = g(Y) 
again. This time we require it to be invariant under 

(4.11) 

. 

(4.12) 
a a 

Z.1 = c(y') dx--+ab)--. S ax ay 
For a given g, a and c are related via 

where A0 is an arbitrary constant of integration. 

4.4. Equations linear in y' 

Equations that are at most linear in y', e.g. 

Y" =ay '+g(y)  (4.14) 
where a is a constant, are of some interest as they reduce to an Abel equation [20] under 
(4.3). Unfortunately, there is no simple way to compute its non-local symmetry, e.g. non- 
local symmetries of the forms 

a z.1 = c(y') dr- S ax 
(4.15) 
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and 
a in, = c(y )  dr- S ax 

(4.16) 

do not leave (4.14) invariant. We obviously need to make a more complicated ansatz. It 
is whimsical to note that the choice c = c(y ,  y') and a = 0 reduces the problem to that 
of solving an Abel equation to determine the non-local symmetry! See also [27] for a 
discussion of methods to obtain solutions for Abel's equation and the impact of hidden 
symmetries. 

Similar observations should aid in the choice of ansatze for a and c in (4.4). It is 
apparent that these symmetries are most appropriate to third-order equations. 

5. Conclusion 

We have presented a systematic approach for finding first-order and generalized non-local 
symmetries of second-order ordinary differential equations. While the solutions of the 
resulting equations may look complicated their determination is surprisingly straightforward 
(we need to solve linear first-order ordinary differential equations as opposed to the linear 
partial differential equations of the classical method.). The analysis was confined to the 
determination of those non-local symmetries that reduce to point symmetries under reduction 
of order via 

a 
ax G = -  

where x represents the independent variable. This restriction is valid as we are only 
interested in those non-local symmetries of the second-order equation that allow us to 
reduce the resulting first-order equation to quadratures. 

Unfortunately, due to the arbitrary nature of the coefficient functions we often need 
to impose further restrictions on the structure of the non-local symmetry. ~ Usually (in the 
case of point symmetries) this arbitrariness does not present a difficulty. Here the problem 
lies in the arbitrary nature of the integrand in these functions. However, we have still 
managed to make some progress. (The restrictions imposed on the integrand are justified 
by the requirement that the non-local symmetry commutes with (5.1) and that it becomes 
a point symmetry under the reduction of order. These assumptions are necessary for the 
non-local symmehy to be of practical use.) In particular we have been able to classify 
all second-order equations possessing a first-order non-local symmetry in addition to the 
point symmetry (5.1). The further classification of second-order equations using non-local 
symmetries lies in making an appropriate ansatz for the integrand in the coefficient functions. 
A few examples (not meant to be exhaustive) were given to illustrate the principle. 

We remarked earlier that the search for non-local symmetries should be confined to 
second-order equations. In the case that one is dealing with higher-order systems where the 
reductions are non-trivial it may be of some benefit to analyse those systems for first- and 
higher-order non-local symmetries. We leave it to the practitioner to decided which of the 
two approaches is optimal. 

We note that differential equations have a rich structure of non-local symmetries. This 
was amply illustrated by the reduced form of the complex Lorentz system. A simple example 
is the analysis of 

(5.2) y" = 0 
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for non-local symmetries of the form 

K S Govinder and P G L Leach 

(5.3) 

Even with this severe restriction on the integrand we find a large number of non-local 
symmetries. 

We have only concentrated on linear non-local symmetries in this paper. A method for 
the systematic search for other possible non-local symmetries (e.g. involving exponential 
functions [8] or other elementary functions) would be of some interest. The determination 
of exponential non-local symmetries are of particular interest as they allow us to reduce 
the order of equations that do not necessarily possess any point symmetries [8] and are 
therefore different from the examples considered here. 

A final remark in order to place this work in its proper perspective, is that hidden 
symmetries have recently been explained from a geometric viewpoint [28] using the concept 
of solvable structures [29]. It is hoped that the treatment above complements this approach. 
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